Mar 14, 2018

Influence of aluminum nitride crystal orientation on MEMS energy harvesting device performance

Aluminum nitride (AlN) is a widely researched piezoelectric material due to its CMOS compatibility. One of the most common applications for AlN is in the area of vibrational energy harvesting. The piezoelectric quality of AlN is related to the crystal orientation of the film and optimal conditions are obtained when AlN is c-axis aligned with a (0 0 2) orientation. AlN can be a challenging material to integrate into a fabrication process due to orientation dependency of the fabrication process. This paper reports on the effects of non-(0 0 2) oriented AlN peaks on an energy harvesting MEMS cantilever structure. Results show that FWHM values of the AlN films from different wafers were approximately the same 8.5°, 8.7°, and 9°, however wafer 1 had additional peaks at (1 0 2) and (1 0 3), which significantly affected the piezoelectric constants and the amount of power generated. The measured d31 value for the wafers were 2.04, 1.97, and 0.84 pm V−1, and the power generated was 0.67, 0.64, and 0.24 µW respectively. These values show that non-peaks of AlN can cause a significant decrease in the piezoelectric constant, which causes significant decrease in the ability to generate power from an AlN film.


Source:IOPscience

For more information, please visit our website: www.semiconductorwafers.net,
send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Mar 6, 2018

Growth of bulk GaN crystals by the Na-flux point seed technique

In this paper, progress in the Na-flux point seed technique (SPST) will be reviewed. Bulk GaN crystals with a diameter of 2.1 cm, a height of 1.2 cm, and large dislocation-free areas were successfully produced by SPST. Panchromatic cathodoluminescence images of a wafer sliced parallel to the c-face from the crystal showed the lack of dark spots due to dislocations over a large area of the wafer. Structural properties were evaluated using synchrotron X-ray diffraction analysis at SPring-8. The full width at half maximum of the 006 rocking curve was found to be 2.1 arcsec, close to the calculated value of 2.0 arcsec for a perfect GaN crystal, indicating that crystals grown by SPST have an almost perfect structure. In addition, we have extended the use of SPST to the coalescence growth of GaN crystals to increase the wafer diameter and obtained a 2 in. GaN wafer with a low dislocation density and a low curvature by this technique.

Source:IOPscience

For more information, please visit our website: http://www.semiconductorwafers.net,
send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com